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Abstract

This paper discusses new boundary constraints for elliptic partial differential equations as used in

grid generation problems in generalized curvilinear coordinate systems. These constraints, based
on the principle of local conservation of thermal energy in the vicinity of the boundaries, are de-

rived using the Green's Theorem. They uniquely determine the so called decay parameters in the
source terms of these elliptic systems. These constraints 1 are designed for boundary clustered grids

where large gradients in physical quantities need to be resolved adequately. It is observed that the
present formulation also works satisfactorily for mild clustering. Therefore, a closure for the decay

parameter specification for elliptic grid generation problems has been provided resulting in a fully

automated elliptic grid generation technique. Thus, there is no need for a parametric study of these
decay parameters since the new constraints fix them uniquely. It is also shown that for Neumann

type boundary conditions, these boundary constraints uniquely determine the solution to the in-

ternal elliptic problem thus eliminating the non-uniqueness of the solution of an internal Neumann

boundary value grid generation problem.
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1 Introduction

A large amount of effort has been devoted to developing, enhancing and using the grid generation

capability 1-7 through the solution of elliptic partial differential equations (pdes). As shown in the

present study, elliptic pdes used in grid generation problems reduce to limiting forms near bound-

aries that are similar to the equations used in nuclear physics, diffusion-reaction problems, vortex

problems, electric space charge problems, steady state heat transfer (conduction and convection)

through long thin fins, etc. In the grid generation problems, these pdes contain appropriate inho-

mogeneous terms that control the distribution of grid points especially near the boundaries. In the

literature, the elliptic pdes used for grid generation are erroneously referred to as Poisson equations
which contain source terms that are functions of only the independent variables, whereas, in the

pdes for grid generation, these inhomogeneous terms also contain terms proportional to the depen-

dent variables. Actually, in grid generation problems, close to a curvitinear boundary, the governing

1Invention under review for NASA Patent



equationsreducetothelongthinfinheattransferequationswithafiniteheattransfercoefficientin
thetransversedirection(normalto theplaneof paper)andalargeheattransfercoefficientin the
lateraldirection.

Mostof the elliptic grid generation studies referred to above have been centered on developing
body conforming grids around bodies for external fluid flow simulations. The grids thus generated

are smooth with at least first two derivatives continuous, appropriately stretched or clustered normal

toany given coordinatedirectionand orthogonalover most ofthe griddomain. The inhomogeneous

terms afforda grid controlto satisfyclusteringand orthogonalky around specificsurfaces(in three

dimensions) and lines (in two dimensions).

In external flows, these inhomogeneous terms, i.e., the source terms and the dependent variable

proportional terms, are designed to vanish away from the body so the problem reduces to solving a

Laplacian away from the body.

In the present study, the inhomogeneous terms used are appropriate for an interior grid generation

problem where all the boundaries enveloping the grid will affect the solution through these terms.

These terms are designed by interpretingtheirmeaning physicallythrough the principleof local

conservationof thermal energy closeto the grid boundaries.

Two geometricalconfigurations,an annulus and a gear tooth, are considered to test the new

boundary constraintsderived inthisstudy. The gear tooth geometry treatedhere corresponds to

that of a planar cross-sectionof a spiral-bevelpinion gear tooth typicalof the 0H-58 helicopter

transmissionpinion. This study isdriven by the need to generate time-seriesvibrationsignatures

from the OH-58 helicoptertransmissionby finitedifferencesimulationof the appropriatestructural

dynamic equations.The choiceofellipticpdes forgridgenerationisentailedby the need to generate

time seriesdata as accuratelyas possible(see relativecomparison with other representativegrid

generationmethods in Ref. 7).

2 Governing Equations

The two-dimensional governing equations for an elliptic grid generation problem in an appropriately
defined planar domain are 1.2

where _ and _7are the generalized curvilinear coordinates, x and y are the Cartesian coordinates,

and the P(_, 7?) and Q(_, 7?) are the inhomogeneous terms.
The form of the inhomogeneous terms, P and Q, is, e.g., exponential 2 and is given by

P((, _) : -ai(_7)sgn(( - (i)exp(-bil( - (il) (la)

Q(¢,,7)= v - - (lb)

where i refers to the grid boundary in question.

For the sake of argument, without loss of generality, if we take the case where _ > _i and _7> _7i

, then we have the inhomogeneous terms as

P((, _7) = -ai(_)exp(-bi(f - (i)) (lc)

Q(_, _) = -ci(_)exp(-di(_? - 77,))

At the boundaries, where _ = _i and 7?= _71,Equations (lc) and (ld) respectively become

=

and

Q(5 =

When bi{_ - (i{ or di{r] - 77il is small, the inhomogeneous terms take the form given by

= - -

Od)



and

Therefore, the governing equation for, e.g., _, in the vicinity of the boundary #i, becomes

_ + _ = -ai(v)(1 - bi(_ - (i))

or

(= + (_ - ai(N)b_( = -a_(_) - ai(N)bi_i (2)

If the term, aibi_, were absent, the resulting equation would turn out to be a Poisson equation. The

equation given above arises, e.g., in the steady state heat conduction problems in long thin fins,
where ( is the temperature and where the heat transfer coefficient in the transverse thin direction

is moderate but is large in the lateral direction, and there is a balance amongst the heat conducted
through the fin, heat carried away from or to it through convection in proportion to this moderate

heat transfer coefficient and the heat sources/sinks distributed over the domain. Consider the case

when ( > (i, then, defining a new variable

0 = _ -(_

Equation(2) becomes

Ozx + Oyy - aibiO = -a_ (3)

The term, -ai, can be interpreted as a heat source term.

Equation(3) tells us that when _ > _i, there is a balance between the heat convected from a

control volume in the interior to the boundary _i, heat conducted out of this control volume and the

heat lost from the control volume due to the heat sink, ai(r]).

Similarly, if we consider the case when _i > (, then Equation (2) becomes

0_ + Oyy - ai(N)biO = ai(_) (4)

where 0 = {i -

The term, a_, can be interpreted as a heat sink term.

Again, Equation(4) tells us that when { < (i, there is a balance between the heat convected from
the boundary {i to a control volume in the interior, heat conducted out of the control voIume and

the heat generated in the control volume due to the source, ai(r]).

From Equations (3) and (4), it can be seen that for a given convective heat flux (given number

of grid lines), as the product, aibi, decreases, the heat transfer coefficient decreases proportionally

in magnitude which means that the temperature gradient at the boundary _ has increased so that

approaches _i rapidly. This means that there is a large gradient in _ from the grid boundary i to

the interior, thereby resulting in a highly clustered grid near the boundary.

Away from this grid boundary, bill - fil or bilrl - Nil is large, and we are left with the Laplace
equation, A_ = 0 or A N = 0 . Extremum principle is unconditionally maintained there, since the
solution is harmonic in this case.

Referring to Equations (3)and (4), the Green's Theorem gives us respectively,

/ /s(-ai + aib_O)&r = _ c)nOds (5)

/ _(ai + aibiO)dcr = _ OnOds (6)

where S is the surface area of a closed domain, C is the boundary enclosing this domain, n is the

normal to the surface, do- is the elemental area and ds is an elemental arc.

The integrands on the Ieft hand side, -t-ai and aibiO represent the heat sink/source term and

the convection term respectively, and the integrand on the right hand side represents the heat flux

through the boundary C.

Equations (5) and (6) are used as constraints to fix bi uniquely for a solution consistent with the
specification of the boundary data. The extremum principle will be satisfied at the ith boundary,

which is the requirement in the grid generation problems, since the energy conservation principle is

satisfied. The term, -4-ai(r]), respectively in Eqs. (6) and (5), is calculated iteratively through the
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solutionprocess,which togetherwith biensuresthe gridorthogonalityand a given gridspacingat

the ith grid boundary.

In the design of the inhomogeneous terms, P(_, 7?) and Q(_, r]) in Eqs. l(a) and l(b), there is

no restriction on the nature of the sink/source term, 4-a_. It can change sign which indicates the

presence of sources and sinks, subject to the constraint given by Equations (5) and (6). Otherwise,

improper combinations of sources and sinks will violate the extremum principle. If over the domain,

there is a net rate of heat generation due to the source/sink combination, then there has to be a

positive heat flux convected away and vice-versa. This requirement will automatically be satisfied

by Equations (5) and (6).

If there is a point heat source present in the domain, the isothermals (temperature or _ or

contour lines) will tend to cluster around it since the gradients in the vicinity of the source will be

positive toward the source and high, depending upon the strength of the source, and conversely for

a heat sink. Same argument applies to a line heat source and sink. By analogy, if the source term
turns out to be positive over some parts of the domain, then the curvilinear coordinate lines will

tend towards lines with higher coordinate values and vice-versa.

3 Solution Procedure

First, the boundary data are selected appropriate to the physics of the problem, so that the gradients

in physical quantities can be resolved adequately. Since there is a symmetry plane and a rotational

symmetry present in the gear problem, the half-tooth grid is reflected about this symmetry plane

and then the tooth grid is rotated about a moving axis of periodicity, thus substantially reducing

the computational effort in prescribing the initial distribution of the entire 19-tooth gear at time,

t = 0. But, for the elliptic grid generation of the entire gear after this inital time, periodic boundary
conditions are used in the circumferential direction.

Then, by interchanging the independent and dependent variables, the governing equations to be

solved in the computational space (4, U) become

ax(( - 2Bz(, + 7x,7, = _j2(p((, U)z_ + Q((, U)x_)

ay(( -2fly_, 7 + 7Ym7 = _ j2 ( p( _, r2)y( + Q( f, rl)y_)

These equations are solved in the computational space using a line SOR relaxation algorithm

where each coordinate line in one curvilinear coordinate direction is solved semi-implicitly using

the Thomas algorithm for tri-diagonal systems. The inhomogeneous terms referred to above are

designed and incorporated so that a desired grid behavior near the boundaries is achieved.

The inhomogeneous problem is solved using a technique similar to that of Ref. 3 by over-relaxing

the inhomogeneous terms during the iteration process. The inhomogeneous terms used in Ref. 3

are well suited for external boundary value problems where they allow for clustering in only one

curvilinear coordinate direction, normal to the body. But, in internal boundary value problems,
inhomogeneous terms have to take account of the influence of the boundaries in both curvilinear

coordinate directions. The inhomogeneous terms used here allow for clustering in both coordinate
directions.

The inhomogeneous terms, P(_,_) and Q(_, r_), are evaluated at the boundaries in terms of the
left hand side at each line relaxation sweep. Then outward from each boundary, the inhomogeneous

terms are attenuated through an exponential function in each direction, as discussed above. In (

direction, outward from a given (i boundary, this exponential term is of the form, -aiexp(-biI(-(i I),

and, in 77direction, it is of the form, -aiexp(-bil_l - rlil).

In what is stated above, a proof of concept study for an annulus and then a gear tooth is carried

out to demonstrate the usefulness of the new boundary constraints. Then, the grid for the complete

19-tooth gear is generated using periodic boundary conditions in the circumferential direction. This

is the only way to solve the grid generation problem in a larger context of structural dynamical

simulation of the gear, since the grid for the entire gear will be subjected to dynamic stresses

nonuniformly.
The boundary constraints given by Equations (5) and (6) are applied to a region close to the

boundary. For example, a finite slender strip close to the boundary, r2m_x, as shown in Fig. 1, is used
as a control volume to evaluate the heat source term and the convective flux term over it with the net



heat flux calculated around it. Ac the rI = r}rn_z boundary, the heat u'anstbr coefficient, h_ is large,

whereas the heat transfer coe_cient, hi is moderate. The pin fin is thin in the z direction, and the

ambient enveloping the fin in the neighborhood of and around the t],_,_ boundary can be imagined

to be at a temperature, r_ = _,_z, since h_ is large. Now, as h_ becomes smaller, the temperature

gradien_ in the y direction near the boundary $_z increases, for a given heat flux (given number of

grid lines, per the boundary prescription), and therefore the clustering there becomes denser. This

is tile physical basis for the argument that the clustering at a given boundary becomes denser when

the decay parameter, 5_, associated with the a_b_d term in Eq. 4 decreases.

":,, I ,d
/ *

g

Figure 1: A schematic showing the finite slender strip over which the boundary constraint is applied

4 Results

The new boundary constraints were validated by generating two-dimensional interior grids for an

annulus and a gear tooth. Figure 2 shows an interior grid for an annulus; clustered at two opposing

boundaries in, e.g., the _ direction. The degree of clustering at/near the r/ boundaries, e.g., is

measured by a cluste.ring parameter, AS/._XS_, where AS is the normal spacing at the q boundary

and A_qa_ is the average spacing based on _he length of the _ coordinate line from one _7 boundary to

the opposing z} boundary and the number of grid points along this [ coordinate line. Therefore, as

the clustering parameter at a given boundary decreases in value, clustering becomes denser at/near

that boundary.

Figs. 3a and 3b show the lower boundary decay parameter convergence rate corresponding to

the clustering parameter value of 0.1, and Figs. 3c and 3d show the corresponding rate for the

upper boundary. The ordinate for these figures shows the number of iterations and the abscissa the

value of the decay parameter. The calculations are stopped when the relative convergence criterion

that the average final spacing at any given boundary is within 10the average initial spacing at that

boundary.

Again, as is seen, the decay parameter converges to a stable value rapidly. Corresponding to this

converged solution, the decay functions for the lower and upper boundaries are shown in Figs. 4a

and 4b. The ordinate in these figuresshows the number of grid points along the _ direction between

the top and bottom r/boundaries.

In Fig. 5, a grid for the gear tooth corresponding to the clustering parameter value of 0.I is

shown. Figs. 6a to 6d show the results for the decay parameter convergence corresponding to this

grid. The corresponding decay function distribution is shown in Fig. 7.

In Fig. 8, a grid for the gear tooth corresponding to the clustering parameter value of 0.05 is

shown. Figs. 9a to 9d show the corresponding results for the decay parameter convergence. Figure

10 shows the corresponding results for the decay function distribution for the lower and upper

boundaries.
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Figure 2: Finite difference grid of annulus, clustering parameter = 0.1
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Figure 3: Results for the annulus: (a), (b) Lower boundary decay parameter convergence, (c), (d)

Upper boundary decay parameter convergence.
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Figure 4: Resul_s for the annulus: a) Lower boundary decay function distribution, b) Upper bound-

ary decay function distribution.
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Figure ,5: Finite difference grid of pinion gear tooth, clustering parameter = 0.1
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Figure 6: Results for the gear tooth, clustering parameter of 0.1: (a), (b) Lower boundary" decay

parameter convergence, (c), (d) Upper boundary decay parameter convergence.
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Figure 7: Results for the gear tooth, clustering parameter of 0.1: a) Lower boundary decay function

distribution, b) Upper boundary decay function distribution.
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Figure 8: Finite difference grid of pinion gear tooth, clustering parameter = 0,05
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Figure 9: Results for the gear tooth, clustering parameter of 0.05: (a), (b) Lower boundary decay

parameter convergence, (c), (d) Upper boundary decay parameter convergence.
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Figure 10: Results for the gear tooth, clustering parameter of 0.05: a) Lower boundary decay

function distribution, b) Upper boundary decay function distribution.

As can be observed by comparing with Figs. 5 and 6 corresponding to clustering parameter of

0.1, the degree of clustering has increased at/near the boundaries, and therefore the decay parameter

value has also correspondingly decreased when the clustering parameter has decreased from 0.1 to
0.05.

Figure 11 shows a section of the complete 19-tooth gear grid which was generated using periodic

boundary conditions in the _ direction (circumferential direction) with a clustering parameter of
0.05.
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Figure 11: Section of a finite difference grid of pinion gear, clustering parameter = 0.05

The grid is seen to be smooth and orthogonal throughout in this case, as expected. Figure 12

shows the gear tooth grid for one-sided clustering at the qm_ boundary. The value of the clustering

parameter at the lower boundary is 5.0, which means that the grid is coarsest at the lower boundary

and it progressively gets refined toward the upper boundary. Dirichlet boundary conditions were

applied at the {1 and 4,_ boundaries. The strict enforcement of orthogonality at these boundaries
is not of concern here since the grid for the 19-tooth gear is generated with the periodic boundary

conditions prescribed at these boundaries. Fig. 12 is another test case showing the efficacy of the
new constraints derived here.
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Figure 12: Finite difference grid of pinion gear tooth, clustering parameter = 5.0

Figures 13a and 13b show :he corresponding lower boundary decay paranteter convergence rate,
and Figs. 13c and 13d show the corresponding rate for the upper boundary. Here also, the decay

parameter converges to a stable value rapidly.

Corresponding to the converged solution, the decay functions for the lower and upper boundaries

are shown in Figs. 14a and 14b. The difference here from the previous two-sided clustering is that

the clustering at lower boundary, qi, is sparse and that at the upper boundary, qma=, is dense as

desired. Accordingly, the decay parameter at the lower boundary is large and that at the upper
boundary is small. The new boundary constraints in this case also yield a grid properly clustered
at both the boundaries.

Another grid simulation with the same clustering parameter value of 5.0 was made with the

complete 19-tooth gear. Periodic boundary conditions in the circumferential direction were used in

this case. The corresponding grid is shown in Fig. 15. The slit .4.4' represents the radial line where

periodic boundary conditions are enforced in the circumferential direction.

As a comparative exampIe, a test case was run with an a priori prescribed value of the decay

parameter of 0.15 corresponding to the case shown in Fig. 12, i.e., with a clustering parameter

value of 5.0, and the resulting grid rapidly degrades as shown in Fig. 16(a) and the corresponding

solution convergence history is shown in Fig. 16(b), where after 50 iterations, the solution aborts

due to negative values of Jacobians. This is just an example of the problems encountered in the

trial-and-error process in prescribing the decay parameter manually, for which now a solution has

been found through the new constraints derived in the present study.

Finally, figure 17 shows a finite-difference grid model of pinion and driven gears in mesh.
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Figure 13: Results for the gear tooth, lower boundary clustering parameter of 5.0: (a), (b) Lower

boundary decay parameter convergence, (c), (d) Upper boundary decay parameter convergence.
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Figure !4: Results for the gear tooth, !ower boundary clustering parameter of 5.0: a) Lower boundary

decay function distribution, b) Upper boundary decay function distribution.
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Figure 15: Finite difference grid of a section of pinion gear, clustering parameter = 5.0
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Figure 16: Comparative results for the gear tooth with a fixed decay parameter value of 0.15

clustering arameter of 5.0: a) grid for the tooth b) convergence history.
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Figure 17: Finitedifferencegrid model ofpinion and drivengears inmesh

5 Concluding Remarks

The boundary constraints for elliptic grid generation problems developed in this study have been
demonstrated for two internal geometrical configurations. Internal grids for an annulus, a gear tooth

and a complete 19-tooth gear were generated using the new constraints. Smooth clustered grids have

been generated using these constraints without hit-and-trial prescription of decay parameters and

without an)' recourse to redistribution of grid points, which has been a common approach used in
elliptic grid generation problems until now. With new constraints, elliptic grids can be generated

in simulation time without any manual intervention thus making problems of structural dynamics

and fluid dynamics over compliant boundaries straightforward. Thus, a fully automated elliptic grid

generation methodology has been developed and validated.
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